Department of Mathematics, East China Normal University

Mid-term Examination
Advanced Ordinary Differential Equations (Required)
16-23 November 2010 (Exam)
Examinee \qquad
Registration Number \qquad
Specialty \qquad

Session 2010-2011

Total Marks	
Instructor's	
Signature	

Note: Marks may be deducted for answers that do not show clearly how the solution is reached.

Answer all four questions. ALL questions carry equal weight.

Question 1. Consider $\dot{x}=f(t, x)=-\left(1+x^{2}\right) x+e^{t}$ with $x(0)=x_{0}$.

1) Verify the conditions on f for which there exists $\omega_{+}>0$ such that the above IVP has a unique solution $x(t)$ on $\left[0, \omega_{+}\right)$;
2) Let $v(t)=x^{2}(t)$. Show that $v^{\prime}(t) \leq-2 v(t)+2 \sqrt{v(t)} e^{t}$ on [0, $\left.\omega_{+}\right)$;
3) Solve the Bernoulli equation $u^{\prime}=-2 u+2 \sqrt{u} e^{t}$ with $u(0)=\left(x_{0}\right)^{2}$;
4) Find the bound of $x(t)$ with $x(0)=x_{0}$ on $\left[0, \omega_{+}\right)$;
5) Show that $\omega_{+}=+\infty$.

Question 2. Consider $x^{\prime}=f(t, x)$ with $x\left(t_{0}\right)=x_{0}$, where $f(t, x)$ is continuous, locally Lipshitz in x and

$$
\|f(t, x)\| \leq b+a\|x\|, \quad \forall(t, x) \in\left[t_{0}, \infty\right) \times R^{n}, \quad a \neq 0
$$

1) Using the comparison lemma to show that the solution $x\left(t, t_{0}, x_{0}\right)$ of the IVP satisfies

$$
\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq\left\|x_{0}\right\| e^{a\left(t-t_{0}\right)}+\frac{b}{a} \cdot\left[e^{-a\left(t-t_{0}\right)}-1\right]
$$

for all $t \geq t_{0}$.
2) Is it possible for $x\left(t, t_{0}, x_{0}\right)$ to have a blow up at finite time? Give reasons please.

Question 3. Suppose that $x_{1}(t), x_{2}(t), \cdots$ and $x_{n+1}(t)$ defined on I are $n+1$ linearly independent solutions of

$$
\frac{d x}{d t}=A(t) x+h(t)
$$

where $A(t)$ and $h(t) \in C(I), h(t)$ is not identically zero on I.

1) Write down its general solution;
2) Show that it is really a general solution.

Question 4. Using Decomposition Theorem to solve $x^{\prime}=A x$ with $x(0)=x_{0}$, where

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 2 & 0 & 1 & 0
\end{array}\right) .
$$

